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The Numerical Weather Prediction Process

Forecast Forecast
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Analysis Analysis

* Analyses and forecasts become more accurate when:

— Observations, forecast model and/or data assimilation
components improve.

— Forecast model carries information from past observations.



What is Data Assimilation?

The processing of combining prior knowledge of the
state of the atmosphere (a previous model forecast)
with new observations.

Temp Ob Model Forecast Temp
(expected error R) (expected error B)
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: "’ Temp
Analysis

If we have equal confidence in the prior forecast and a new observation
(R = B), analysis is half-way between (equal weight given to each).



What is Data Assimilation?

The processing of combining prior knowledge of the

state of the atmosphere (a previous model forecast)
with new observations.
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(expected error R)
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If we have less confidence in the prior forecast (B > R), analysis is

closer to the observation. The job of DA is to compute the weights
that optimally blend the observations and the model forecast.
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Data assimilation terminology

y : Observation vector (weather balloons, satellite
radiances, etc.)

X :the state of the atmosphere as represented by the
model

x° : Background state vector (“prior”)
X2 : Analysis state vector (“posterior”)

H : (hopefully linear) operator to convert model state 2
observation location & type

R : Observation - error covariance matrix
PP : Background - error covariance matrix
P2 : Analysis - error covariance matrix



Bayesian Data Assimilation
(assuming Gaussian PDFs)

Assume errors in first-guess forecast Tpb-
are Gaussian, with mean x, and p(x) o< exp <_(X — Xp) (x - Xb))
covariance PP.

Conditional prob of obs (y) o1
given state (x), which has p(y[x) o< exp (—(y — Hx)"R™'(y — Hx))
mean Hx and covariance R.

So, substituting into Bayes Rule
yields the conditional prob. of state p(x]y) o p(y|x)p(x)
given past observations...

p(xly) o exp (—(x = x4)TP" "' (x = x3) — (y — Hx)TR"}(y — Hx))



From Bayes theorem to 4DVar and the (Ensemble) Kalman Filter
p(xly) o exp (—(x = x4)TP" "' (x = x3) — (y — Hx)TR"}(y — Hx))

Variational methods maximize the posterior PDF to find the state
trajectory x that best fits the obs y in a least-squares sense. In practice,
this is done by minimizing a cost function, which is what's inside the exp:

J(x) o (x — Xb)TPb_l(X —xp) + (y — HxX)'R™!(y — Hx)

The minimum can be found analytically if H is linear (see Lorenc 1986
QJRMS for the algebra). This gives the equations for the Kalman Filter

X, = Xp, + K(y — Hxp), P* = (I - KH) PP
K = PPHT (HPPHT +R)

» Matrix P® js too big for any computer, covariance update step impractical.

» Instead, represent PDFs of x and 'y by an ensemble, compute sample estimate of

P°. Evolve the sample, not the full covariance. EnKF gives same result as full KF if
ensemble size becomes infinite.



P in the Variational Solution

“Assimilation window”: time interval that
encompasses observations to be assimilated (6 hours

to a day).

“3DVar”: Assume PP is does not vary in assimilation
window (climatological estimate).

“4DVar”: PP specified at beginning of assim. window,
evolved with linearized model through the window.
Accuracy of covariance estimate depends on:
— Accuracy of linear model (typically low-resolution with
very simple physics).

— Accuracy of initial condition (initial P® typically set to
3DVar version at start of window), length of window.



Why does PP matter?
Example 1: Front

Temperature observation near a warm front

1000 hPa temperature ’gK and
surface pressure (hPa

Increment (static) Increment (flow dependent)

I "o~
N\ N Q
> I
[T ] ‘
-1.25-1.0-.75 -5 -.25 .25 .5 .75 1.0 1.25
Analysis Incremen t (K)
T T —




Why does P matter?
Example 2: Hurricane

Increment (flow dependent) Increment (static)

160km

850mb wind background (ms™)

160km

80km o 80km =
+

0 0 - '
2 ’
—{ 15 ’ 7
-80km -80km =
— 10 7] 1
— 5 VNN S - 7 P ]
-160km — -160km =t - T T T T -160km =

-160km -80km 0 80km 160km -160km -80km 0 80km 160km -160km -80km 0 80km 160km
45 4 E)

Flow dependant covariances in a hurricane can
produce axisymmetric increments for a single ob.

figure c/o Xuguang Wang, University of Oklahoma 10



Why does P matter?
Example 3: unobserved variables

Precipitable Water Analysis Increment 2004013000

ps ob

First-Guess SLP

contours .

°  First-Guess Precipitable Water

180° 120°W

Surface pressure observation can improve analysis of integrated water vapor
(through flow-dependent cross-variable relationships). If climo weighting

were used (3DVar) there would be essentially no vapor increment.
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Computational shortcuts in EnKF:
(1) Simplifying Kalman gain calculation

K =P°H’ (HPbHT +R)

define Hx’ 1 Hx

P H' = (x - X XHX — Hx" )

=1

HP°H' = L E (Hx?’ _ Hx® XHx?’ _ Hx® )

The key here is that the huge matrix P° is never explicitly formed



Computational shortcuts in EnKF:
(2) serial processing of observations (requires
observation error covariance R to be diagonal)

Method 1 Observations
1and2
Background K
forecasts EnKF — > Analyses

Method 2
Observation Observation
1 2
Background Analyses
forecasts EnkF after obs 1 EnkF Analyses




The serial EnKF — a recipe

Given a single ob y° with expected error variance R, an ensemble of model forecasts x°
(model priors), and an ensemble of predicted observations y? = Hx® (observation priors):

Step 1: Update observation priors.

(1a) Yo = (1 —K)y, + Ky° update for ob prior means
(1b) y; =+/(1— K)y]/D rescaling of ob prior perturbations

where the scalar K = var(y?)/(var(y®)+ R), overbar denotes means, prime denotes
perturbations, superscript b denotes prior, a denotes analysis.

Linear interpolation between observation and observation prior mean with weight K
(0<=K<=1), rescaling of observation prior ensemble so posterior variance is consistent with
Kalman filter, i.e. var(y?2)=(1-K) var(y®)= var(y®)R/(var(y°)+R).

when var(y®) << R, all weight given to prior.
when var(y?) >> R, all weight given to observation.

14



The serial EnKF — a recipe (2)

Step 2: Update model priors.

Let AX= X?-XP be analysis increment for model priors, Ay= Y-y is analysis
increment for observation priors.

(2) Ax=GAy computation of increments to model prior

where G = cov(xP?, y°T)/var(y®)
Linear regression of model priors on observation priors.
Only changes model priors when x? and y® are correlated within the ensemble.

If there is more than one ob to be assimilated, the observation priors for other (not
yet assimilated) obs (Y?) should be also be updated using (2) with Ax replaced by AY.
Next iteration, replace y® with next column of Y?, removing that column from Y. After
each iteration the model priors and observation priors are set to the latest analysis
values (x2 replaces x°, Y@ replaces YP). Continue iterating until Y? is empty.



Factors limiting EnKF performance
1) Treatment of model error

Must account for the background error covariance associated with
“model error” (any difference between simulated and true
environment). Methods used so far:

1) multiplicative inflation (mult. ens perts by a factor > 1).

2) additive inflation (random perts added to each member —
e.g. differences between 24 and 48-h forecasts valid at the
same time).

3) model-based schemes (e.g. stochastic kinetic energy
backscatter for representing unresolved processes, multi-
model/multi-parameterization).

Opnl NCEP system uses a combination of 1) and 2).



Can we replace the additive inflation by
adding stochastic physics to the model?

* Schemes tested:
— SPPT (stochastically perturbed physics tendencies)
— SKEB (stochastic KE backscatter)
— VC (vorticity confinement, deterministic and/or stochastic)

— SHUM (perturbed boundary layer humidity, based on
Tompkins and Berner 2008, DOI: 10.1029/2007JD009284)

* All use stochastic random pattern generators to
generate spatially and temporally correlated noise.



Examples of stochastic patterns

1000 km
2000 km

0.57

-0.57

-1.05 5 10 15

time (days) (from M Leutbecher)
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ECMWF method (SPPT)

Stochastically Perturbed Physics Tendency

* Perturbed Physics tendencies

X, = (1+ru)X-—

Original physics tendencies

M: vertical weight: 1.0 between surface and 100 hPa,
decays to zero between 100 hPa and 50 hPa.

r: horizontal weights: range from -1.0 to 1.0, a red
noise process with a

» temporal timescale of 6 hours

 e-folding spatial scale of 500 km



Stochastic boundary-layer humidity

* SPPT only modulates existing physics tendency (cannot
change sign or structure, trigger new convection).

e Triggers in convection schemes very sensitive to BL
humidity.

qperturbed = (1 + }"M)q

e Vertical weight r decays exponentially from surface.
Added every time step after physics applied. Random
pattern p has a (very small) amplitude of 0.0015,
horizontal/temporal scales same as SPPT.



Stochastic Kinetic Energy Backscatter

e Algorithm described in Shutts (2005), Berner
et al (2009)

— Designed to represent the effects of dissipated
motions near truncation scale on resolved
motions.

— Random patterns are modulated by amplitude of
KE dissipation (numerical, possibly other sources
like convection — we only consider numerical
dissipation here).



Vorticity confinement

(Sanches, Williams and Shutts, 2012 QJR doi 10.1002)

DV | . A -
TILHJka X Vi +Vo=puV*Vg +en x [(|k

Fa
Figure 6: Two frames of animation from two mpeg movies created
using flowanim and mpeg2encode. Both frames depict the 60th
frame of the movie. The left animation is created without vorticity
confinement, the one on the right with vorticity confinement and a g
relatively high force factor Contours

€Nl acts as an advective
velocity

€ can be a constant (determinstic VC) or a random
pattern (stochastic VC) or a combination of both.

S VC force



pressure (hPa)

Vector Wind (left) and Temp (right) O-F (2013091000-2013101412)
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Additive noise vs stochastic physics

Z500 120-h AC NH
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Factors limiting EnKF performance
2) Treatment of sampling error (localization)

e All EnKF implementations localize the spatial impact of
observations on the model state.

e Done by spatially modulating covariance between obs. prior

and model state, or by only using observations ‘close’ to a model
state variable to update that variable.

e Needed to account for low rank of ensemble (compared to
model state).

e Methods used currently are not flow dependent, and assume
there is no sampling error at ob location.



Covariance localization

raw gain ens size = 40

b
P

2

raw gain ens size = 160

raw gain ens size = 80

¥ N
..

D Ch

R

s
i
v

raw gain ens size = 320

* AMSUA n15 channel 6 radiance

at 150E,-508S.

* Increment to level 30 (~¥310mb)
temperature for a 1K O-F for
40,80,160,320 and 640 ens
members with no localization.

* Ens generated by running with

stochastic physics from
operational analysis.

raw gain ens size = 640

0.225
0.150

40.075

10.000

4-0.075

—0.150

-0.225
26



Covariance Localization
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Localized covariances

localized gain ens size = 40

localized gain ens size = 80

raw gain ens size = 640
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localized gain ens size = 160

localized gain ens size = 320
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W

localized gain ens size = 640
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Vertical localization

raw gain ens size = 80 localized gain ens size = 80
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Ensemble-Var methods: nomenclature

* En-4DVar: Use EnKF to propagate PP from one
assimilation window to the next (replace static PP with
EnKF estimate of PP at start of 4DVar window).

* 4D-EnVar: P* at every time in the assim. window
comes from ensemble estimate (linear model no
longer used).

* As above, with hybrid in name: PP? is alinear
combination of static and ensemble components.

 3D-EnVar: same as 4D ensemble Var, but P?is
assumed to be constant through the assim. window
(current NCEP implementation).



Why combine EnKF and Var?

Can propagate P® from across
assimilation windows

More flexible treatment of
model error (can be treated in
ensemble)

Automatic initialization of
ensemble forecasts.

PP estimated with a much
better model (full fcst model)

Treatment of sampling error in
ensemble PP estimate does not
depend on H.

Dual-resolution capability — can
produce a high-res “control”
analysis.

Ease of adding extra constraints
to cost function, including a
static PP component.

No sampling error in evolution
of PP within assim. window
(when TLM is used)



Current implementations

NCEP uses hybrid 3D-EnVar (since May 2012), with 80
member ESRL/PSD serial EnKF implementation. % static, %
ensemble PP,

UKMet uses hybrid En-4DVar (DOI: 10.1002/qj.2054) since
late 2011, with 23 member Ensemble-transform Kalman
Filter (ETKF). ¥ static and % ensemble in PP. Will be
switching to 4D-EnVar.

Env Canada uses hybrid 4D-EnVar (since mid 2013), with
192 member EnKF with % static and % ensemble.

ECMWEF uses ensemble of low-res 4DVar analyes to define
diagonal elements of P? in higher-res 4DVar with 12-h
window. Moving to very long window (2-3 days) to
improve estimate of PP.
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4D-EnVar vs 3D-EnVar (and 3DVar)

courtesy D. Kleist

Northern Hemisphere Southern Hemisphere
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Move from 3D Hybrid (current operations) to Hybrid 4D-EnVar yields
improvement that is about 75% in amplitude in comparison from going to
3D Hybrid from 3DVAR. 35



500 hPa Day 5 Time Series

Northern Hemisphere Southern Hemisphere
Anomaly Correl: HGT P500 G2 /NHX 00Z, fhi2o Anomaly Correl: HGT P500 G2/SHX 00Z, fhi1i20
1 1
0.9 H4*
0.9 - X
0.8 -
0.8 0.7 1
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0.8 - 0.
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1 Verification Date Verification Date

Again, going from 3D to 4D-hybrid yields improvement at day 5
similar (not quite as large in SH) to what was seen in going
from 3DVAR to 3D-hybrid
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Time Evolution of Increment:
hybrid 4D-EnVar vs En-4DVar

TLMADJ ENSONLY

H-4DVAR_AD T=-3h

Solution at beginning of window
same to within round-off (because
observation is taken at that time,
and same weighting parameters
used)

t=-3h |- R

Evolution of increment qualitatively
similar between dynamic and
ensemble specification

** Current linear and adjoint
models in GSI are computationally
impractical for use in 4DVAR other
than simple single observation
testing at low resolution

s A h b A4 v D b NSRS N N e fe e 0.
t=+ , »
-~ 4!
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Single Observation (-3h) Example
for 4D Variants
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Summary

* Improvements in analysis quality in NWP over
the last 20 years have resulted mainly from:

— Improvements to forecast model.

— Improving PP estimates using 4D-Var and ensembles.

* Further improvements to come via:
— Larger ensembles.
— Better treatment of model and sampling error.

— Methods to deal with non-Gaussian error statistics
(from e.g. feature displacement, monotonicity).



Extra slides



What if ob errors are correlated?
(R not diagonal)

Either thin obs so that they are space far enough
apart so that errors are uncorrelated, or....

* Diagonalize R =STQS, where Q is diagonal.

* Replace H with G=HS.

* Replace Y° with Z°=SY, y° with z°=Sy°, R with Q.
* Assimilate obs serially in this transformed space.




LETKF Algorithm

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

Ob error in local volume is increased as a function of distance from red dot,
reaching infinity at edge of circle.

42



Local Ensemble Transform Kalman Filter (LETKF)
Globally:

’»
Forecaststep: X,, =M, (X,J,_],k
Analysis step: construct b _ | b _ 3P b b |.
y P X —[xl x" .. Ix} —X ]

vy, = H&) Y, =y =¥ L.ly; =¥ |

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

f,a — [(K _ l)l + YI)TR—le :I_l ’ Wa — [(K _ l)pa]m

Analysis mean in ensemble space: W = P'Y'R'(y -V
and add to W¢“ to get the analysis ensemble in ensemble space

The new ensemble analyses in model space are the columns of

X =X"W* +X" . Gathering the grid point analyses forms the new
global analyses. Note that the the output of the LETKF are analysis
weights W and perturbation analysis matrices of weights W¢. These

weights multiply the ensemble forecasts. .



Relaxation To Prior Spread (RTPS) Inflation
Described in DOI: 10.1175/MWR-D-11-00276.1

Inflate posterior spread (std. dev) 0@ back toward prior

spread oF
P 0% ¢ (1 — a)o® + ac®

Equivalentto / ob—ga
X, — X"/«

o +1

44



